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Abstract

In this paper, the weakly nonlinear equations of motion are derived for a slender flexible cylinder subjected to axial

flow. The cylinder centreline is considered to be extensible, and hence two coupled nonlinear equations describe its

motions, involving both longitudinal and transverse displacements. The fluid forces are formulated in terms of several

components, for convenience. For high Reynolds number flows, the dominant, inviscid component is modelled by an

extension of Lighthill’s slender-body work; frictional, hydrostatic and pressure-loss forces are then added to the inviscid

component. The derivation of the equations of motion is carried out in a Lagrangian framework, and the resultant

equations are correct to third-order of magnitude, Oðe3Þ, where the transverse displacement of the cylinder is of OðeÞ.
This is the main contribution of this paper; however, the equations have been solved and some interesting results are

presented also. Bifurcation diagrams with flow velocity as the independent variable, supported by phase-plane plots,

show that the system loses stability via a supercritical pitchfork bifurcation and develops divergence, and at higher flow

flutter, which is what has been observed experimentally and predicted by linear theory in the past. It is shown that post-

divergence flutter does exist, not as an instability of the trivial equilibrium (as predicted by linear theory), but as a Hopf

bifurcation emanating from the nonlinear static equilibrium. For high enough flow, interesting dynamics follow,

including quasiperiodicity and chaos.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Historically, the first specific study on the dynamics of a slender flexible cylinder subjected to axial flow was by

Hawthorne (1961) and was concerned with the stability of the Dracone barge. The Dracone is a long flexible towed

tubular container with tapering ends, which has been designed to carry oil and other liquids lighter than sea-water. This

analysis was extended and generalized for cylinders with any boundary conditions and supported by experiments by

Paı̈doussis (1966a, b), as well as for towed cylinders (Paı̈doussis, 1968). Later, a more general, corrected linear equation

of motion was derived by Paı̈doussis (1970, 1973), and the theory was further extended to deal with cases of confined

flow. The dynamics of long, very slender cylinders—modelled as strings, rather than beams—has been studied by

Triantafyllou and Chryssostomidis (1985). Also, the dynamics of clustered cylinders in axial flow has been extensively

studied [by Chen (1975) and Paı̈doussis and Suss (1977) among others; see Paı̈doussis (2003)], both because of its
e front matter r 2005 Elsevier Ltd. All rights reserved.
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inherent interest and for applications, to tube-in-shell type heat exchangers for example. Also, additional extensions to

the theory have been made to deal with the dynamics in highly confined annular flow [e.g., by Paı̈doussis et al. (1990)]. It

should be remarked that the dynamics of towed cylinders is of interest not only for the Dracone problem, but also for

the towed arrays used in oil exploration. Apart from Hawthorne’s and Paı̈doussis’ original work, studies on towed

systems were made by Dowling (1988a, b) and many others; see, e.g., Paı̈doussis (2003).

The dynamics of cylinders in axial flow is dynamically similar to that of axially moving 1-D structures in quiescent

fluid, such as paper web in paper-making, and travelling chains, bands and tapes (Mote, 1968; Pramila, 1987). The

dynamics of this system is also closely related to that of pipes conveying fluid (Paı̈doussis, 1998, 2003).

Recently, the dynamics of cantilevered flexible cylinders in axial flow has been re-examined via a nonlinear theory for

the first time (Paı̈doussis et al., 2002; Lopes et al., 2002; Semler et al., 2002), using the centreline-inextensibility

assumption, which is reasonable only for cantilevered cylinders. In that three-part study, the physical dynamics, the

derivation of the nonlinear equation of motion, and the nonlinear dynamics of cantilevered cylinders in axial flow have

been discussed in detail.

In this paper, a weakly nonlinear equation of motion for an extensible slender flexible cylinder subjected to axial flow,

exact to third-order of magnitude, is derived, which in the linear limit is identical to that obtained by Paı̈doussis (1973).
2. Definitions and preliminaries

2.1. Basic assumptions and concepts

The system under consideration consists of a cylinder of length L, cross-sectional area A, mass per unit length m, and

flexural rigidity EI, centrally located in a rigid channel within which a fluid flows with velocity U parallel to the channel

centreline. The undeformed cylinder axis coincides with the X-axis (in the direction of gravity) and the cylinder is

assumed to oscillate in the (X,Y) plane (see Fig. 1).

The basic assumptions made for the cylinder and the fluid are as follows: (i) the fluid is incompressible; (ii) the mean

flow velocity is constant; (iii) the cylinder is slender, so that the Euler–Bernoulli beam theory is applicable; (iv) although

the deflections of the cylinder may be large, the strains are small; (v) the cylinder centreline is extensible.

The derivation to be presented here, so far as the fluid dynamics of the system is concerned, is similar in spirit and

procedure to that of Paı̈doussis (1966, 1973). Thus, for convenience, the inviscid, viscous and hydrostatic forces are

determined separately, rather than being determined together, say by direct application of the Navier–Stokes equations.
Fig. 1. Diagrammatic view of a vertical slender flexible and extensible cylinder subjected to axial flow, in the test-section of a

circulation system.
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2.2. Notation and coordinate systems

One usually has the choice between two sets of coordinate systems: one for the undeformed body (Lagrangian

coordinates) and the other for the deformed body (Eulerian coordinates). The deformation of a point is described by the

relation of the coordinates of the same material point in the undeformed and deformed states. Let (X ;Y ;Z) represent

the position of a material point P in its original state, and (x; y; z) the position of the same point in the deformed state.

Then, the displacement of that material point is defined as u ¼ x� X ; v ¼ y� Y and w ¼ z� Z. For a slender cylinder

with its initially undeformed state along the X-axis and undergoing motions in the (X ;Y ) plane, we have Y ¼ 0, hence

y ¼ v; and w ¼ z ¼ Z ¼ 0:
Defining e as the axial strain along the centreline of the cylinder, one may relate dX and ds, where s is the curvilinear

coordinate along the cylinder, through the condition

e ¼
ds� dX

dX
, (1)

and therefore

eðX Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ v02

q
� 1, (2)

where ð Þ0 ¼ qð Þ=qX :
Let y1 be the angle between the centreline of the cylinder and the X-axis (see Fig. 2). For a cylinder undergoing planar

motion, extensible or inextensible, the curvature is given by

k ¼
qy1
qs

. (3)

For an extensible cylinder, y1 is defined via

cos y1 ¼
dx

ds
¼

qx=qX

qs=qX
¼

qx=qX

1þ e
, (4)

sin y1 ¼
dy

ds
¼

qy=qX

qs=qX
¼

qy=qX

1þ e
. (5)

In terms of the X-coordinate, Eq. (3) becomes

k ¼
qy1
qX

qX

qs
¼

1

1þ e
qy1
qX

. (6)

Then, using (4) and (5), one can find

y01 �
qy1
qX
¼

y00x0 � y0x00

ð1þ eÞ2
, (7)

thus yielding the curvature for cylinders with an extensible centreline, namely

k ¼
y00x0 � y0x00

ð1þ eÞ3
. (8)
i
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Fig. 2. An element dx of the cylinder, showing the forces acting on it.
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2.3. On the derivation of the nonlinear equations of motion

Large motions imply that terms of higher order than the linear ones have to be kept in the equation; here, only

quadratic and cubic nonlinear terms are retained. For planar motions, the lateral displacement may be supposed to be

small, relative to the length of the cylinder, i.e., y ¼ v�OðeÞ, where OðeÞ denotes the first order. One can see that the

longitudinal displacement u is one order higher than v, i.e., u�Oðe2Þ.
Because we have assumed that the cylinder is extensible, no relation between the virtual displacements dX and dY

exists. Therefore, two equations of motion are necessary: one in the X- and the other in the Y-direction.

To derive the equations of motion we shall use Hamilton’s principle, usually written as

d
Z t2

t1

L dtþ

Z t2

t1

dW dt ¼ 0, (9)

where L ¼ T � V is the Lagrangian of the system, in which T and V are, respectively, the kinetic and potential energy

associated with the cylinder, and dW is the virtual work due to the forces acting on the cylinder; d is the variational

operator. This variational technique requires that the quantities involved be correct to one order higher than that

sought: in this case to Oðe4Þ at least.
3. Kinetic and potential energies of cylinder

The kinetic energy of the cylinder is defined by

T ¼
1

2
m

Z L

0

V2
c dX ¼

1

2
m

Z L

0

ð _u2 þ _v2Þ dX , (10)

and hence the variation of the kinetic energy is given by

d
Z t2

t1

T dt ¼ �m

ZZ
ð €uduþ €vdvÞ dX dt, (11)

where ð�Þ ¼ qð Þ=qt.

The potential energy of the cylinder comprises gravitational and strain energy components. In general, the

gravitational energy depends on the distribution of mass, and is written as VG ¼
R
r fðxÞ dV ; where f is the

gravitational potential per unit mass. In a uniform gravitational field as for the system at hand, it becomes

VG ¼ �mg

Z L

0

ðX þ uÞ dX , (12)

hence

d
Z t2

t1

VG dt ¼ �mg

ZZ
du dX dt. (13)

An exact form of the strain energy, in the case of large deflections and correct to Oðe4Þ, was obtained by Stoker (1968)

with only one major assumption: the strain is small, even though the deflection may be large. Stoker’s analysis finally

leads to

VS ¼
1

2
E

Z L

0

Ae2 þ I ð1þ eÞ2k2
� �

dX , (14)

where X represents the Lagrangian coordinate, A the cross-sectional area, I the area-moment of inertia, and e the axial
strain.

The axial strain may itself be decomposed into two components: (i) a steady-state strain due to a tension T externally

applied or associated with gravity and friction, and (ii) a time-varying strain due to cylinder oscillation. By reference to

Eq. (14) and using Eq. (6), this strain energy may be expressed as

VS ¼
1

2
EA

Z L

0

T

EA
þ e

� �2

dX þ
1

2
EI

Z L

0

qy1
qX

� �2

dX . (15)
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Following Paı̈doussis (1973), the tension T can be expressed as

qT

qx
¼ �

1

2
rDU2CT þmg

� �
; (16)

then, using qT=qX ¼ ðqT=qxÞðqx=qX Þ ¼ ðqT=qxÞð1þ u0Þ and integrating the resulting equation from X to L, one can

find

TðX Þ ¼
1

2
rDU2CT þmg

� �
L� X þ uðLÞð1� dÞ � u
� �

þ TðLÞ, (17)

where TðLÞ is the tension at the downstream end, which can be written as

TðLÞ ¼ T dþ
1

2
rD2U2Cbð1� dÞ �

1

2
rDU2CT 1þ

D

Dh

� �
þmg

� �
L

2
d; (18)

T is an externally imposed uniform tension and Cb is a base pressure coefficient, in case the downstream end of the

cylinder is exposed to the flow and free to slide axially (Paı̈doussis, 1973); d in Eqs. (17) and (18) is an index: d ¼ 0

signifies that the downstream end is free to slide axially, and d ¼ 1 if the supports do not allow net axial extension.

Therefore, the final form of the tension force becomes

TðX Þ ¼
1

2
rDU2CT þmg

� �
L 1�

1

2
d

� �
� X þ uðLÞð1� dÞ � u

� �

�
1

2
rDU2CT

D

Dh

L

2
dþ

1

2
rD2U2Cbð1� dÞ þ T d, ð19Þ

where it is obvious that when d ¼ 1, uðLÞ ¼ 0:
Recalling that u�Oðe2Þ and v�OðeÞ, and using Eqs. (2) and (7) one may obtain

qy1
qX

� �2

¼ v002 � 2v002u0 � 2v002v02 � 2v0v00u00 þ Oðe5Þ. (20)

Therefore, using Eqs. (15), (19) and (20), we obtain

d
Z t2

t1

VS dt ¼

ZZ
� EAðu00 þ v0v00Þ � EIðv00v000 þ v0v0000Þ

�

þ
1

2
rD2U2Cbð1� dÞ þ T �

1

2
rDU2CT

D

Dh

L

2

� �
d

� �
v0v00

þ mgþ
1

2
rDU2CT

� �
1þ u0 �

1

2
v02 þ L� X �

Ld
2

� �
v0v00

� �	
du dX dt

þ

ZZ
�EA v0u00 þ v00u0 þ

3

2
v02v00

� �
þ EIv0000

�
� EI 3u000v00 þ 4u00v000 þ 2u0v0000 þ v0u0000 þ 2v003 þ 2v02v0000 þ 8v0v00v000


 �
þ mgþ

1

2
rDU2CT

� �
v0 �

1

2
v03 þ L� X �

Ld
2

� �
�v00 þ v0u00 þ v00u0 þ

3

2
v02v00

� �
þ ðu� uðLÞÞv00

� �

þ
1

2
rD2U2Cbð1� dÞ þ T �

1

2
rDU2CT

D

Dh

L

2

� �
d

� �

� �v00 þ v0u00 þ v00u0 þ
3

2
v02v00

� �	
dv dX dt. ð21Þ

4. Virtual work of the fluid forces acting on the cylinder

The fluid-related forces acting on the cylinder are: FA, the inviscid hydrodynamic force, which acts in the transverse

direction; FN and FL, the normal and longitudinal frictional forces; and Fpx and Fpy, the hydrostatic pressure forces in

the x- and y-direction, respectively, as shown in Fig. 2.
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4.1. Some preliminary relationships

In subsequent calculations, we define by U the axial flow velocity for the undisturbed flow; we also utilize Uf, which

represents an axial flow velocity relative to an axially deforming cylinder (see Fig. 3). We can relate one to the other by

the following relation (Lopes et al., 2002):

Uf ¼ U 1�
qu

qX

� �
þ Oðe4Þ. (22)

Let us consider Fig. 3, showing an element dx subjected to deformation induced by the fluid. This representation

enables one to define the angles required in the determination of the forces: i.e., y1, the angle between the longitudinal

axis of the element and the X-axis

y1 ¼ tan�1
qy=qX

qx=qX

� �
, (23)

and y2, the angle between the relative fluid-body velocity (see Eq. (29) further on) and the X-axis

y2 ¼ tan�1
qy=qt

Uf � ðqx=qtÞ

� �
. (24)

In the definition of y2, we notice that the axial velocity of the cylinder is indeed taken into account. It should be

mentioned that, because Uf is of order zero and qx=qt is of second order, the expression Uf � qx=qt in equation of y2 is
always positive.

The angles y1 and y2 may be expressed as

y1 ¼ v0 � u0v0 � 1
3

v03 þ Oðe5Þ, (25)

y2 ¼
_v

Uf

þ
_x_v

U2
f

� 1
3

_v3

U3
f

þ Oðe5Þ, (26)

where primes and dots denote derivatives with respect to X and t, respectively. Hence, using series expansions, we can write

cos y1 ¼ 1� 1
2

v02 þ Oðe4Þ,

sin y1 ¼ v0 � u0v0 � 1
2

v03 þ Oðe5Þ. ð27Þ
i

j

i1 j1 

θ 1

Uf 

y

x

U

V 

2θ

Fig. 3. An element of the cylinder used for the determination of the relative fluid-cylinder velocity V and of the angles y1 and y2; the
latter is the vectorial sum of _y and �Uf þ _x.
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Based on Fig. 3, we define the angle of incidence i ¼ y1 þ y2, which will be used later; it corresponds to the angle between

the relative fluid-body velocity and the centreline of the body, so that

cos i ¼ 1�
1

2
v02 þ 2

v0 _v

Uf

þ
_v2

U2
f

 !
þ Oðe4Þ,

sin i ¼ v0 þ
_v

Uf

� u0v0 þ
_u_v

U2
f

�
1

2
v03 þ

_v3

U3
f

þ
v02 _v

Uf

þ
v0 _v2

U2
f

 !
þ Oðe5Þ. ð28Þ
4.2. The inviscid hydrodynamic forces

To determine the inviscid hydrodynamic forces to Oðe3Þ, we adapt Lighthill’s work (1960), which is essentially an

application of slender body theory [see Lopes et al. (2002) for details].

In Fig. 3, we introduce the new system of unit vectors ði1; j1Þ, which corresponds to ði; jÞ rotated by an angle y1 in the

counterclockwise direction. We isolate an element of the cylinder as in Fig. 3, and define the relative fluid-body velocity

as

V ¼ _yþ _x�Uf . (29)

Then, projecting this relative fluid-body velocity on j1, the direction normal to the element, considering the

trigonometric expressions (27), and replacing Uf by U by means of expression (22), the relative fluid-body velocity

becomes

V ðX ; tÞ ¼ _vþUv0 � 1
2
_vv02 � 2Uu0v0 � 1

2
Uv03 � _xv0 þ Oðe5Þ. (30)

The next step involves the extension of Lighthill’s linear potential flow theory to a third-order nonlinear formulation,

subject to a number of assumptions. Eventually, a nonlinear expression of the lift, is derived, correct to third-order of

magnitude (Lopes et al., 2002). The inviscid hydrodynamic force, as used here, has the same magnitude as the lift, but

acts in the opposite direction. For a cylinder of constant cross-section, i.e., ðqA=qX Þ ¼ 0 and added mass

MðX Þ ¼M ¼ wrA, the inviscid hydrodynamic force, may be obtained as

FAðX ;TÞ ¼
q
qT
þ ½Uð1� u0Þ � ð _uþUu0Þ�

q
qX

� 	

� Vl � ð _uv0 þ 2Uu0v0Þ �
1

2
Vlv
02

� �
M þ

1

2
MV lv

0V 0l þ Oðe5Þ; ð31Þ

where Vl ¼ _vþUv0; and therefore

FAðX ;TÞ ¼M½€v� €uv0 � 2 _u_v0 � 1
2
€vv02 � 3

2
_v_v0v0 þUð2_v0 � 3 _u0v0 � 4u0 _v0 � 5

2
_v0v02 � 2 _uv00 � 3

2
_vv0v00Þ

þU2ðv00 � 2u00v0 � 4u0v00 � 2v02v00Þ� þ Oðe5Þ. ð32Þ
4.3. The frictional forces

The frictional forces are formulated essentially as proposed by Taylor (1952), i.e.,

FN ¼
1
2
rDU2ðCN sin i þ CDp sin

2 iÞ, (33)

FL ¼
1
2
rDU2CT cos i, (34)

respectively, in the normal and longitudinal directions; D is the cylinder diameter, CDp the form drag coefficient due to

the normal component, and CN and CT, in general not equal, are the coefficients associated with friction in the normal

and tangential directions, respectively.

Combining (33) and (34) with expressions (28) and relating Uf to U through Eq. (22), one obtains

FN ¼
1

2
rDU2 CN v0 þ

_v

U
þ
_vu0

U
� u0v0 þ

_u_v

U2
�

1

2
v03 þ

_v3

U3
þ

v02 _v

U
þ

v0 _v2

U2

� �� ��

þCDp v0 v0
�� ��þ v0j_vj þ jv0j_v

U
þ
_vj_vj

U2

� ��
þ Oðe4Þ, ð35Þ
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FL ¼
1

2
rDU2CT 1�

1

2
v02 þ 2

v0 _v

U
þ
_v2

U2

� �� �
þ Oðe4Þ. (36)

The quadratic terms in the expression for FN are modified by using the method proposed by Triantafyllou and

Chryssostomidis (1989), in order to obtain forces which are odd with respect to v0 and _v; thus forces always opposing
motion. In Eqs. (35) and (36), CN ;CT and CDp are supposed to be independent of axial location for simplicity.

4.4. The hydrostatic pressure forces

Following the procedure in Lopes et al. (2002), the hydrostatic pressure forces, Fpx and Fpy (see Fig. 2), which are the

resultants of the steady-state pressure p acting on the outer surface of the element, for a constant cross-section cylinder

are found to be

�Fpx ¼
qp

qx
A �

1

2
v02 þ u0

� �
� v0v00pAþ Oðe4Þ, (37)

Fpy ¼
qp

qx
A v0 �

1

2
v03

� �
þ pA v00 � u00v0 � u0v00 �

3

2
v02v00

� �
þ Oðe5Þ: (38)

Furthermore, by assuming the lateral movement of the cylinder to have a negligible effect on the axial pressure

distribution in the fluid at large (its velocity then being U), one may write (Paı̈doussis, 1973)

A
qp

qx
¼ �

1

2
rDU2CT

D

Dh

þ rgA, (39)

where D is the diameter of the cylinder, Dh is the hydraulic diameter, and CT is the uniform frictional coefficient, as in

Eq. (36).

Knowing that Aðqp=qX Þ ¼ Aðqp=qxÞð1þ u0Þ and using Eq. (39), one can integrate the resulting equation from X ¼ X

to L, assuming the cross-sectional area to be constant, and thus obtain

ApðX Þ ¼ ApðLÞ þ
1

2
rDU2CT

D

Dh

� rgA

� �
L� X þ uðLÞð1� dÞ � u
� �

þ Oðe4Þ, (40)

where pðLÞ is the pressure at the downstream end of the cylinder, which may be represented by

ApðLÞ ¼ ð1� 2nÞPAþ rgA
L

2

� �
d, (41)

in which n is the Poisson ratio; as before d ¼ 1 if there is no sliding at the ends, and d ¼ 0 if the downstream end can

slide axially; P stands for the value of p at X ¼ 1
2

L.

Combining expression (39) with (37) and (38), we get

�Fpx ¼ �
1

2
v02 þ u0

� �
�
1

2
rDU2CT

D

Dh

þ rgA

� �
� v0v00Apþ Oðe4Þ, (42)

Fpy ¼ v0 �
1

2
v03

� �
�
1

2
rDU2CT

D

Dh

þ rgA

� �
þ v00 � u00v0 � u0v00 �

3

2
v02v00

� �
Apþ Oðe5Þ. (43)
4.5. The total virtual work of the fluid forces

The virtual work of these forces on the whole body may be written asZ t2

t1

dW dt ¼

Z t2

t1

Z L

0

�FPx þ FL cos y1 þ ðFA þ FN Þ sin y1½ �


dx

þ FPy þ FL sin y1 � ðFA þ FN Þ cos y1
� �

dy
�
dX dt. ð44Þ

One should be very careful when developing expression (44), in the use of the expressions for the forces and

trigonometric expressions, Eqs. (27), (32), (35), (36), (42) and (43), to ensure that third-order accuracy is maintained.
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For an extensible cylinder, considering two independent variables, one eventually obtainsZ t2

t1

dW dt ¼ �

Z t2

t1

Z L

0

�
1

2
rDU2CT 1�

1

2

_v2

U2
�
_vv0

U
� v02

� ��
�Mð€vv0 þ 2U _v0v0 þU2v0v00Þ

�
1

2
rDU2CN

_vv0

U
þ v02

� �
�

1

2
rDU2CT

D

Dh

� rgA
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5. Equations of motion

Taking Eqs. (9), (11), (13), (21) and (45) into account, one eventually finds two coupled equations of motion, one in

the X- and the other in the Y-direction, describing the behaviour of an extensible cylinder subjected to axial flow:
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In Eqs. (46), (47) and what follows, d̄ has been replaced by d for simplicity. In order to find the nondimensional form

of the equations of motion, we first introduce the following nondimensional quantities:

x ¼
X

L
; z ¼

u

L
; Z ¼

v

L
; t ¼

EI

mþ rA

� �1=2
t
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,
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rA
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,
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4

p
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p
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p
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4

p
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,
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EI
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TL2

EI
; P0 ¼

EAL2

EI
; w ¼

M

rA
. ð48Þ

Next, we replace X, u, v, CN , CT and CDp by their corresponding nondimensional values, x, z, Z, cn, ct and cd ,

respectively, as defined in (48), to yield the following form for the dimensionless equations:
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In these equations, z and Z are, respectively, the dimensionless displacement in the longitudinal and transverse direction;

U is dimensionless flow velocity, used extensively as the independent parameter in studying the dynamics of the system;

b ¼ rA=ðmþ rAÞ is a mass ratio; P0 ¼ EAL2=EI , P ¼ PAL2=EI and G ¼ TL2=EI are dimensionless measures of axial

flexibility, pressurization and externally imposed uniform tension, respectively; cn and ct are the coefficients of frictional

forces in the normal and tangential (longitudinal) directions, respectively; cd is the coefficient of transverse form drag;
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d ¼ 0 or 1 if the downstream end is free to slide axially (or wholly free), or is axially fixed; n is the Poisson ratio;

g ¼ ðm� rAÞgL3=EI is a gravity coefficient; cb is the base-drag coefficient acting in the longitudinal direction at the free

end of the cylinder when d ¼ 0; e ¼ L=D is the slenderness ratio; h ¼ D=Dh is a hydraulic coefficient, Dh being the

hydraulic diameter; and w ¼M=rA is an added mass coefficient which increases with increasing confinement.

These equations of motion are valid for all boundary conditions of a slender flexible cylinder subjected to axial flow,

either supported at both ends or free at the downstream end.1 The equation of motion derived in Lopes et al. (2002) is

valid only for cantilevered cylinders. In that derivation the inextensibility assumption has been used which relates the

displacement in the transverse direction to that in the axial direction, leading to a single equation of motion. In the

present equations of motion, however, no such assumption has been made, and hence we have obtained two coupled

equations of motion, one mainly for the axial and the other for the transverse direction. In these equations, there are

some terms, which would vanish if the inextensibility assumption had been used.2 There are also some terms in Eqs. (49)

and (50) containing external pressure and externally imposed tension on the cylinder, which are not present in the

equations of motion for the cantilevered cylinder, because such terms do not exist when there is a free end ðd ¼ 0Þ. There

is also a new essential parameter defined in this set of equations, relating the axial and transverse flexibilities of the

cylinder ðP0Þ, which also does not arise if the centreline is inextensible.
6. Method of analysis

As a first step towards solving the partial differential equations of motion, (49) and (50), they are transformed into a

set of second-order ordinary differential equations using Galerkin’s technique with the beam eigenfunctions fjðxÞ and
cjðxÞ used as a suitable set of base functions and with qjðtÞ and pjðtÞ the corresponding generalized coordinates; thus

zðx; tÞ ¼
XNu

j¼1

cjðxÞpjðtÞ, (51)

Zðx; tÞ ¼
XNv

j¼1

fjðxÞqjðtÞ, (52)

where Nu and Nv represent the number of modes in the longitudinal and the lateral direction, respectively. Substituting

expressions (51) and (52) into (49) and (50), multiplying (49) by ciðxÞ and (50) by fiðxÞ and integrating from 0 to 1,

using the fact that
R 1
0 ciðxÞcjðxÞ dx ¼

R 1
0 fiðxÞfjðxÞ dx ¼ dij (dij being the Kronecker delta), leads to the following matrix

form:

Mu
ij €pj þ Cu

ij _pj þ Ku
ijpj þ A1

ijkqjqk þ A2
ijkqj _qk þ A3

ijk _qj _qk þ A4
ijkqj €qk

þ B1
ijklqjqkjql j þ B2

ijklqj _qkjql j þ B3
ijklqjqkj _ql j þ B4

ijklqj _qkj _ql j ¼ 0 ð53Þ

and

Mv
ij €qj þ Cv

ij _qj þ Kv
ijqj þD1

ijkpjqk þD2
ijk _pjqk þD3

ijkpj _qk þD4
ijk _pj _qk þD5

ijk €pjqk þ E1
ijkqjjqkj þ E2

ijk _qjjqkj

þ E3
ijkqjj _qkj þ E4

ijk _qj j _qkj þ F1
ijklqjqkql þ F2

ijklqjqk _ql þ F3
ijklqj _qk _ql þ F4

ijkl _qj _qk _ql þ F5
ijklqjqk €ql ¼ 0, ð54Þ

where the coefficients are given in the appendix.

Concerning the linear terms, Mu
ij ; Cu

ij and Ku
ij correspond, respectively, to the mass, damping and stiffness matrices

in the u-direction and Mv
ij ; Cv

ij and Kv
ij to the corresponding matrices in the v-direction. All the other terms are related

to coefficients of the nonlinear terms in the u and v directions.

In the foregoing, internal dissipation in the material of the cylinder was neglected; for generality, it is now introduced

into the equations of motion, via the simplest possible model. The internal dissipation of the cylinder is assumed to be

viscous and linear. In order to find the related terms, we look at the linear equations of motion in the axial and the

transverse directions, assuming that there are no flow- and gravity-related forces. The linear equations of motion

become Mu
ij €pj þ Ku

ijpj ¼ 0 and Mv
ij €qj þ Kv

ijqj ¼ 0; in the axial and the transverse directions, respectively, where

Mu
ij ¼

R 1
0
cicj dx ¼ I ij , Ku

ij ¼ �P0

R 1
0
cic

00
j dx; Mv

ij ¼
R 1
0
fifj dx ¼ I ij , Kv

ij ¼
R 1
0
fif

ð4Þ
j dx; I ij being the identity matrix.
1If the end is free, however, special boundary conditions may have to be introduced, to represent the possibly tapering tip of the

cylinder (Lopes et al., 2002; Paı̈doussis, 2003).
2Taking the inextensibility assumption into account, one finds e ¼ 0 in Eq. (2) leading to z0 ¼ � 1

2
Z02.
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In the axial direction, the linear viscous damping can be written as Cu
ij;viscous ¼ 2BðKu

ijM
u
ijÞ

1=2
¼ 2B �P0

R 1
0 cic

00
j dx

� �1=2
¼ 2B

ffiffiffiffiffiffi
P0

p
lu

i ; l
u
i being the ith eigenvalue of a bar in axial vibration, with the same boundary conditions as the cylinder,

and B being the damping ratio. In the same manner, one can find the viscous damping in the transverse direction as

Cv
ij;viscous ¼ 2Bðlv

i Þ
2; lv

i being the ith eigenvalue of a beam in transverse vibration. Cu
ij and the third term in Cv

ij in the

appendix are terms associated with this dissipation.

Solutions are obtained by Houbolt’s finite difference method (FDM). Houbolt’s FDM is an initial-value problem

solver in which the system of equations is integrated numerically for one initial condition at a particular time, and the

state of the system at any time thereafter can be reproduced (Semler et al., 1996).
7. Analysis of a simply-supported cylinder

In this part of the paper, as an example, the dynamics of a simply-supported cylinder will be studied using the

equations presented in the foregoing. In the case of a simply-supported beam, the eigenfunctions of a bar in axial

vibration, cjðxÞ, and those of a beam in transverse vibration, fjðxÞ, are used, which are identical; i.e.,

cjðxÞ ¼
ffiffiffi
2
p

sinðjpxÞ, (55)

fjðxÞ ¼
ffiffiffi
2
p

sinðjpxÞ. (56)

One can now evaluate the coefficients of the matrix equations in (53) and (54).

Linear analysis of this system (Paı̈doussis, 1973), considering small motions, can predict the point of first loss of

stability, but cannot provide any definitive prediction of its post-critical behaviour. Linear theory predicts that, in

general, at low-flow velocities, the cylinder is stable; then, as the flow velocity increases, the cylinder is subjected to

divergence (buckling) in its first mode. Linear theory also predicts the occurrence of second-mode buckling of the

system, and at higher flow velocities the existence of coupled-mode flutter (so-called ‘‘Paı̈doussis flutter’’) in some cases.

In order to investigate the validity of the post-critical behaviour of the system as predicted by linear theory, and also to

determine the amplitude of buckling, as well as the amplitude and frequency of oscillatory motion if flutter does exist,

the dynamics needs to be examined via nonlinear analysis.

The information gained from a nonlinear analysis of the system is often summarized in bifurcation diagrams in

which, typically, the amplitude of motion is plotted as a function of one parameter of the system; in this paper, the first

generalized coordinate of a simply-supported cylinder is plotted as a function of the dimensionless flow velocity. In the

bifurcation diagrams, a solution on the x-axis represents the original configuration, i.e., the inert cylinder in its

equilibrium position. A nonzero solution can represent either a nontrivial static equilibrium position (representing a

buckled stationary cylinder) or the amplitude of oscillation for flutter.

7.1. The influence of different parameters on the stability and the amplitude of the buckled solution

In the following sections, the influence of different parameters on the stability and the amplitude of the buckled

solution of the system is examined for the following physical parameters: D ¼ 0:0254 m, r ¼ 1000 kg=m3,

m ¼ 0:5817 kg=m, M ¼ 0:507 kg=m and E ¼ 2:76 MPa; leading to the following dimensionless values: U ’ 3UL,

b ¼ 0:47, g ¼ 12:996L3 and t ¼ 0:27t=L2, where U is in m/s, L in m and t in s. Here U is used as the independent

parameter, which is varied. It is assumed that w ¼ 1 and h ¼ 0; which corresponds to a cylinder in unconfined flow, and

that the coefficient of form drag is zero, cd ¼ 0: The cylinder is not allowed to slide at the downstream end; hence, d ¼ 1

and cb ¼ 0: The damping ratio, B; is assumed to be 0.01 in all modes.

7.1.1. Influence of frictional coefficients

In this study, the frictional coefficients in the normal and tangential directions are assumed to be equal, cn ¼ ct

(Paı̈doussis, 2003, Appendix Q). Also, since in the equations of motion they always appear as ecn and ect, the effect of

varying ecn ¼ ect is the same as varying cn ¼ ct. Fig. 4(a) shows the bifurcation diagram of the system for different

values of ecn ¼ ect. Here it is assumed that P0 ¼ 10 000; corresponding to L ¼ 64 cm and e ¼ 25; and Ḡ ¼ 0: It is seen
that, with increasing ecn and ect, the first bifurcation point (divergence) occurs at progressively lower flow velocities;

also at a fixed flow velocity, the amplitude of buckling is increased with larger values of these coefficients. These two

effects could be explained by noting that larger ecn and ect imply that half the cylinder is subjected to an increasing

compressive load.



ARTICLE IN PRESS

(a)

(b)

(c)

Fig. 4. Bifurcation diagrams of a simply-supported cylinder obtained with Nu ¼ Nv ¼ 2 and with (a) different values of ecn ¼ ect,

ranging from 5 to 40, (b) different values of G, ranging from –5 to 20, and (c) different values of P0, ranging from 1000 to 10 000.
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7.1.2. Influence of externally imposed uniform tension

An externally imposed uniform tension ðG ¼ TL2=EIÞ represents a pre-strain in the longitudinal direction of the

cylinder. Fig. 4(b) shows the bifurcation diagrams of the system with varying G for P0 ¼ 10 000 and cn ¼ ct ¼ 0:025:
When a larger tension is applied on a cylinder, higher flow velocities are needed to cause instability; hence, the critical

flow velocity (for divergence) increases. With increasing G at a fixed flow velocity, the amplitude of bucking decreases.

This is because in a stretched cylinder, the lateral displacement will be reduced. One would expect the same influence on

the behaviour of the system for the coefficient of base drag (cb) and pressurization (P), both of them representing a pre-

strain in the longitudinal direction of the cylinder.

7.1.3. Influence of dimensionless axial flexibility

The dimensionless axial flexibility P0 ¼ EAL2=EI is a measure of the axial rigidity as compared with the transverse

rigidity of the system. For a full cylinder (not hollow), P0 ¼ ð4L=DÞ2; this implies that, for a fixed D, increasing the

value of P0 means a larger L; therefore, a larger amplitude of buckling should be expected. Fig. 4(c) shows

the bifurcation diagrams of the system for different values ofP0 for cn ¼ ct ¼ 0:025 and G ¼ 0: It is seen that, the larger

the value of P0 is, the smaller the amplitude of buckling becomes! The answer to this paradox lies in the fact that the

dimensionless flow velocity and the dimensionless transverse displacement, both depend on the length of the cylinder.

Once this is taken into account, the results are as one would expect. It has also to be noticed thatP0 has no influence on

the first bifurcation point.

7.2. On nonlinear post-divergence behaviour of the system

Fig. 5 shows a bifurcation diagram for a simply-supported cylinder with the parameters mentioned in Section 7.1.

This bifurcation diagram is for P0 ¼ 4000; corresponding to L ¼ 40 cm and therefore e ¼ 15:81; it is also assumed that

cn ¼ ct ¼ 0:025 and G ¼ 0: As is well known, bifurcations are determined mathematically by the eigenvalues in the case

of a fixed point, and by the Floquet multipliers in the case of a periodic solution. A complete description may be found

in Paı̈doussis (1998). Fig. 5 has been obtained using six modes (in the Galerkin solution) each in the axial and the

transverse directions. The first generalized coordinate, q1, is representative of the behaviour of the system.

As expected, the system is stable at very low flow velocities corresponding to the original equilibrium state, up to

where it loses stability via a supercritical pitchfork bifurcation (one eigenvalue is equal to zero) at a nondimensional

flow velocity U ’ p in conformity with linear theory, and it leads to divergence (stable nonzero static solution or fixed

point). Subsequently, q1 increases with U. The resulting static solution eventually loses stability, and the system

develops flutter via a supercritical Hopf bifurcation (two complex-conjugate eigenvalues with zero real parts) at

U ’ 14:23, corresponding to periodic solutions around the buckled positions (fixed points). Figs. 6(a)–(c) show the time

history, phase-plane and power-spectral-density plots of the periodic response of the system at U ¼ 14.6, where the

system is subject to flutter. The system oscillates around the static equilibrium point, where q1 ’ 0:082:
Fig. 5. Bifurcation diagram of a simply-supported cylinder with b ¼ 0:47; g ¼ 0:838; cn ¼ ct ¼ 0:025, e ¼ 15:81, d ¼ 1; n ¼ 0:47,
P0 ¼ 4000, w ¼ 1;P ¼ G ¼ cb ¼ cd ¼ 0, obtained with Nu ¼ Nv ¼ 6.
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Table 1

Flow velocity at which the first Hopf bifurcation (HB) occurs versus the number of modes in the two directions used in the

computations

Nu ¼ Nv 4 5 6 7 8

Value of first HB flow velocity 14.3123 14.7772 14.2334 14.1557 14.1110

Y. Modarres-Sadeghi et al. / Journal of Fluids and Structures 21 (2005) 609–627624
The resulting limit cycle then becomes unstable via a torus bifurcation (two complex-conjugate Floquet multipliers

cross the unit circle) at U ’ 14:73. This bifurcation usually corresponds to the appearance of a second frequency in the

periodic response, indicating that quasiperiodic solutions are possible thereafter. Figs. 6(d)–(f) show the time history,

phase-plane and power-spectral-density plots of the system atU ¼ 14:8, which indicates a quasiperiodic-two oscillation,

as it involves two fundamental frequencies. The two dominant frequencies are f 1 ¼ 1:4114 and f 2 ¼ 2:7847; so that all

the other peaks in the PSD may be confirmed to correspond to f ¼ mf 1 � nf 2 with m and n integers. The time history,

phase-plane and power-spectral-density plots of the system at U ¼ 16 are shown in Figs. 6(g)–(i). The oscillation here is

chaotic. In the PSD, chaotic oscillations are associated with a wide frequency band. At U ¼ 16, notice that, although

the main frequency and its harmonics are still very prominent, the subharmonic content is fundamentally flat and quite

high.

At higher flow velocities, there is a range of flow velocities (between U ¼ 16:9 and U ¼ 17:25) in which two different

attractors co-exist: a nonzero static attractor and a chaotic (strange) attractor.3 The static branch loses its stability by a

Hopf bifurcation at U ¼ 18:73 and a periodic motion arises with a relatively high frequency (around 30Hz). This high-

frequency periodic motion becomes unstable via a torus at U ¼ 19:6 leading to a quasiperiodic motion.

The dynamics of this system has been studied, using two modes in each direction by Modarres-Sadeghi et al. (2003).

It was also shown that if one imposes a very large initial value for the first generalized coordinate, a large-amplitude

high-frequency flutter-like motion of the cylinder is predicted; this unrealistic motion disappears when the number of

transverse-direction modes used in the solution is increased sufficiently, as done here.

As Table 1 shows, the flow velocity at which the first Hopf bifurcation occurs, converges to U ¼ 14:2–14.1 for

Nu ¼ Nv ¼ 6 and greater. UsingNu ¼ Nv ¼ 7; the system has been found to behave similarly to the case of six modes in

each direction, both qualitatively and quantitatively. The only difference is that the periodic solution of the system

becomes unstable via a period-doubling bifurcation at U ¼ 14:53 (one of the Floquet multipliers crosses the unit circle

at –1) followed by a torus at U ¼ 14:73, which corresponds to the critical value for the torus bifurcation, found when

using six modes in each direction.
8. Conclusion

In this paper, a weakly nonlinear equation of motion, correct to third-order of magnitude, has been derived for the

dynamics of an extensible slender cylinder subjected to axial flow using Hamilton’s principle. Here, lateral deflections

are assumed to be of first-order magnitude, while axial ones of second order. For convenience, inviscid, hydrostatic and

viscous forces are determined separately, not together, say by direct application of the Navier–Stokes equations. This

equation is probably not the definitive nonlinear equation of motion for this system, since it was not obtained by a

unified nonlinear treatment of the fluid mechanics.

Based on the derived nonlinear equations of motion, the dynamics of the system was studied from a nonlinear point

of view, and the existence of post-divergence instabilities of the cylinder was proved, in qualitative agreement with

observation (Paı̈doussis, 1966b). Also, the effect of some of the key parameters affecting the critical flow velocities and

the amplitude of the resultant motions were explored. It is found that the system loses stability by a pitchfork

bifurcation leading to divergence, and the new equilibrium at higher flow becomes unstable by a Hopf bifurcation,

leading to flutter. With further increases in the flow velocity, the dynamics becomes more complex, and quasiperiodic

and chaotic solutions have been obtained.
3The static deformation of the cylinder (static solution) at U ¼ 18 was calculated. Surprisingly perhaps, it is basically of first-mode

shape, albeit with strong second-mode and substantial third-mode contributions. In contrast, close to the onset of divergence, i.e., at

U ¼ p, the deformation is nearly a half sinusoid (the classical first-mode shape).
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Appendix

The coefficients of the matrix form of the equations of motion (53) and (54), are given here, as follows4,5:
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4Here, lu
i is the ith eigenvalue of a bar in axial vibration and B is the damping ratio.

5lv
i is the ith eigenvalue of a beam in transverse vibration.
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